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ordinate axis andthehelix angle cp1 is shown in fractions of x12, i.e. q =&rim. 
The problem can also be solved using the elastic-plastic deformation equations of Sect.2. 

The only difference is that the deformation parameters (3.2) must be substituted into (1.12) 
instead of (2.9). The solution of the respective problem for an ideal elastic-plasticmaterial 
and the deformation theory of plasticity when 'pO = n/2, Rla = 10'# and z,lE = 7.2.1O-s are 
shown in Fig.2 by the solid lines. They are in good agreement with the results of the theory 
of limit equilibrium, beginning from the helix angles tp<0.8&. The disagreement observed 

at cp< O.W2 is explained by the fact that in the region of the n =8 plane the approx- 
imating sphere lies inside the surface (2.9). The results are virtually indistinguishable 
when the accurate relations are used. 
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AN APPROXIMATE METHOD OF OPTIMIZING THE SHAPE OF REINFORCEMENT RODS 
IN NON-UNIFORMLY AGING MATERIALS* 

A.D. DROZDGV and V.B. KOLMANOVSKII 

The problem of optimizing the shape of a rod made of a non-uniformly aging 
viscoelastic material and reinforced by an elastic material is considered. 
Geometrical and integral constraints are imposed on the area of cross-section 
of the rod. The optimum shape is selected to minimize the maximum deflection 
of the rod in a fixed time interval. An approximate method of optimizing 
the shape is proposed and justifiedin the case of slight creep of the material, 
Results of numerical calculations are presented. 

1. Statement of the problem of rod shape optimization. consider the bending 
of a rod of length L made from non-uniformly aging viscoelastic material and reinforced by 
an elastic material. The 0% axis is directed along the axis of the rod in the undeformed 
state. Me will denote by 1, (%), Z,, Z (%) th e moments of inertia of the cross-sections of the 
basic material, the reinforcing material, and the whole rod, respectively, and by S(E) the 
rod cross-section at the point %. The arrangement of the reinforcement is specified, and 
is independent of the coordinate %.' The rod moment of inertia i(%) and the area of cross- 
section S(E) are connected by the relation 

1 (E) = %Sn (&) (1.1) 

where n, a,, are given positive constants. The cross-sectional area of the rod is bounded 

o<s,,(s(%)g's,<~ (1.2) 

and the reinforcing material is completely covered by the viscoelastic material. The latter 
assumption is satisfied for example, when the reinforcement is in the region corresponding 
to the minimum possible area of cross-section that represents either a rectangle of constant 
thickness and varying width , or a rectangle of constant width and varying thickness, or a 
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circle. The moduli i& of instantaneous elastic deformation of the basic material and E, of 
the reinforcing material are constant, and the measure of creep of the viscoelastic material 
is defined /l/ by the formula C,(t,T)= PI @)[I - exp(-y(t -t))], where cpl is a twice continu- 

ously differentiable, monotonically decreasing function that takes positive values, and 
y>O are constant coefficients. 

An external load is applied to the rod at the instant of time 
the time interval fO,Tl. 

t =0 that acts during 
We denote by Y(t,Q the rod deflection at the point 5 at the in- 

stant t, by M(t, i) the bending moment M(t, f) = M,(t, 5, Y (t, f)), and by ~~(5) the age of the 
basic material at the instant the external load is applied. The function p1 is piecewise- 
continuous and bounded. 

When the stress state is uniaxial, the strains eo, e, and stresses a*, o, of the basic 
and reinforcing materials are connected by the relations ;2/ 

It follows from the hypothesis of plane cross-sections and the conditions of continuity 
that the rod deflection satisfies the equation 

where 
(1.4) 

The function b defines the degree of reinforcement of the basic material by the elastic 
one, the quantity C,, defines the creep of the aged material, and the dimensionless parameter 
E is the ratio between the elasticity and creep of the basic material. The numerical value 
of E does not exceed unity for materials with strong creep properties‘ (e.g., concrete), and 
is substantially less than unity for materials with low creep, Henceforth we will assume e 
to be a small parameter. 

The problem of optimizing the shape of a rod with a fixed volume V” consists of deter- 
mining the function So that satisfies (1.2) and minimizes the value of the rod maximum 
deflection 

~=supr.E/Y(t.e)i.5Sp(BdS=V” (1.5) 
c 

t E LO, Tl, e E 1% Ll 

The function b aatisfies the equation 

81 < b (5) < co, B1.l =i E& L+%%,t f (4 - &) L+- (1.6) 

We take the function b as the new controlling function, since it is connected with S by 
the unique relation (l.l), (1.4). 

2. Expansion of the solution of the optimization problem in series in 
powers of a small parameter-. The control 6” that satisfies (1.6) will be called the E- 
optimalsolutionof the problem of optimizing the shape of a rod for a fixed volume, if a 
constant c>O independent of e exists such that J(b')<J, +ce, where Jo is the minimum 
valueoff41e function (1.5) and the equation 

(2.1) 

is satisfied. 
Generally the precedure for determining the optimimum shape of the rod using the small 

parameter is as follows. We expand the function Y in a series in powers of e, Y(t,E) *YZI i 
eY, + . . . + e2YI -I- . . . _ , substitute this expansion into (1.3!, and equate the coefficients 

of like powers of E. We obtain 
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(2.2) 

tJe denote by Y(t, E, b),Y,(&&b) the solutions of (1.3) and (2.2) that correspond to 
control b, and by b,, bJO the controls that minimize the functionals J(b) - SU&,E lY(t,&b) 1, 

Js (b) =“supi,EjYs(t, g, b) -i-. . r -k ejyj (h 6, b) /under conditions (l-6), (2.1). Le+.. us assume that 

at fixed i 20 a constant cr >O exists such that for any TV 10, T], E= [O,Lj, e~?(O,i) that 
satisfy (1.61, (2.1) the inequality 

is satisfied. Then the following estimate5 hold: 

i J @Jo) - iJ (bf) 1 Q c$+I, 1 J (b,) - J, (b,‘) i < CX~‘+~ (2.4) 

I J @,I - J (bj’) 1 Q 2ckei+’ 

Relation (2.4) means that the function bjo is the eJ*-optimal control in the problem 
of the rod shape optimization. 

Remark. Let the external load and rod support conditions be independent of time. The 
functions Y@,Y, have the form, 

Y0 (t. u = 2, (EL YI (1, El = (i - e-? z, (1) 

where Z,.Z1 satisfies the oridnary differential. equations 

d"z, 
-eW, T- EJa 

&Z.I b a& tc, &.I 
w mm E,fa ay 

(2.5) 

If inequality (2.3) is satisfied, the problem of determining the optimal control of the 
integrodifferential equation (1.3) to within quantities of the order of 82 reduces to the 

problem of constructing the optimal control of ordinary differential equation5 (2.5). 

We will further assume that the rod is subjected to a distributed transverse load of 
Intensity &> 0 and compressive force P. If the function 9% is specified, the problem of 
shape optimization will be called the problem with full information. If, howeirer, the function 
qI is- a priori unknown, and only its equivalent foxce 

CJ=[SIl(WE 

is known, and the quantity ~spt,~,~~ Ir(& @ 1 is to be minimized, the problem of rod shape 
optimization will be called the problem with insufficient information. To justify the estimate 
12.4) it is then necessary to specify that the constant c 1 should be independent of 91. The 
problem when there is no Compressible force P was considexed in /3/. 

3. Optimization of the shape of a cantilever rod with incoxnplete info-- 
tion regarding the external load. Let one end of the rod be rigidly fixed and the 
other be free. The rod deflection is measured from the free end. Let us assume that the 
following inequality is satisfied: 

PLO Ia,E&” + (Es - E,) I,]” & 0,25na (3.1) 

that ensures the stability of the respective elastic rod of any admissible form. Introducing 
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the dimensionless variables 

I = E/L, Q (4 = ~1 WJQ, P (4 = PI (5) 

B (4 = b (EL Y (t, 4 = PY 6 WQL) 

we write the equation for the deflection in the form 

w f a& (t, s).= - aSm. { 1 -+- ey (1 - B) cp (p (5)) x 

(3.2) 

(3.3) 

y (f, 1) = ay (f, opz = 0, m(z)=in(E)(S--4dE 
0 

where a is a dimensionless parameter. 
For any admissible functions $ the rod deflection reaches its maximum value at t = T, 

3 = 0, q (2) = 6 (z), where 6is the delta function, i.e. when the transverse load represent the 
concentrated load Q applied to the free end of the rod. 

We denote by B the set of functions fl measurable on the segment IO, 11 satisfying (1.61, 
and by&the set of functions b,, EBo that satisfy (2.1). 

The problem of optimizing the shape of the rod consists of determining the functions 
fi,, E B. that minimize the functional J(B) =Y(T, O), where the function y,satisfies (3.3) 
when m (5) = m, (5) = 1 - z. We set 20 (5) = y (0, z), z1 (t, I) = e%y (t, 2)/h. The functions zo,zl 
satisfy the equations 

$? -!- up20 = - agm (I) (3.4) 

Using the method of Lagrange multipliers we form the expression 

m ( fs) = .I(o)+~~l(rD)sxp(-y’df+ $+~]“‘ndr- v,) 

Let us consider the problem of determining the optimal control $a(") E B that minimizes 
the functional JCL) on the set Li. The optimal control in the initial problem has the form 

PO = PO(L), where ho is found from the condition 

We denote by $ the solution of the conjugate equation 
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~+u~(~~x)=-EavS(i-~)l(t+P(x)) x 

T 

1 II, (~4 exp [ - Y 5 (i + 4v (s -i- P (4)) dt] dz; 
1 L 

and by F,G the functions of the form 

$ (& 1) = 0, atl, (f, 0)/0x = - 1 

F&t, B)=z1(t,x) + ey(l -zg)iSz1(~.2)rp(r+P(2)) x 
0 

ex~(eye5rp(F,+p(z))dE)dr+(ao(l)+m(+))pl(~(z))x 
0 

exP(-ev8~~fltp(zid~)j 

* 

c 

Let $,,(h,x) be the solution of the algebraic equation 

&(=, p) p+m ( f - 3g!i p)- = J, 

According to the necessary optimality condition /a/, the function Be@) is defined by 
the formula 

Bo(Lx)<f)l 

Bo(h,x)>I% 
@o&x)* t%<C(Lx)<& 

In the case of full information about the external load the above formulas remain valid, 
if by ?n(x)we mean the dimensionless bending moment of the external load. 

To investigate the effect of the basic material age on the optimum shape of the rod, a 
numerical solution was obtained for the problem of optimizing a rod of rectangular cross- 
section of thickness h and constant width d when there is no reinforcing material. The selected 

Fig.1 Fig.2 

parameters ofthe problem were: L= 4 m, d= 0.3 m, h, = 0.1 m, h, = 0.3 m, CPI (7) = A,+ Al/x, -40 = 
0.233 .W'hNia-~, AI = 1.35~iO-LMIla-~V day, E, =r 2.0.101 MIIa, .y = 0.04 day-1 T = 50 day, Im = 0.24 m3. The 
rod is subjected to a uniformly distributed transverse load and compressive force P= 2.5.lW N. 
As the test functions & we used the following: 

i) h(E)=2 day; 2) ~i(E)==15 day; 3) h(E)= 
2dayP<E<2 m 
*3day 2<EC4 m: 

, 
i5day,OdE<2 m 

4) @(')-( 2day,2<E<k m 

The optimal thickness distribution of the rod is shown in Fig-l, where curves 1-4 cor- 
respond to the above test functions. The calculations show that the aging of the whole rod 
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material virtually does not affect the optimal thickness distribution, while a change in the 
age of one the parts of the rod results in a redistribution of the material and an increase in 
the younger part of the rod at the expense of the older part. 

The solution of the equations that determine the optimum shape of the cantilever rod is 
a fairly complicated problem, particularly when a reinforcing material is present. It is 
more convenient to use the method of Sect.2 of ex'panding the solution of the optimization 
problem in series in powers of the small parameter, and determining the e*-optimal shape of 
the rod. When condition (3.1) is satisfied for any function BE B, formula (2.3) holds for 
constant Cl independent of q,t,x. Hence the &*-optimal control in the problem of optimizing 
the shape of the cantilever rod provides the minimum of the functional 

where y,, y, is the 

J1 ((I) = y, (0) + E [1 - exP (-WI !/l(O) 

solution of the set of equations 

J$ + aSyo=- a@(s), ye(l)= v= 0 (3.5) 

To solve the problem of the optimal control of the set of equations (3.5) we can use the 
Pontriagin maximum principle /5/. 

Above we succeeded in obtaining, in explicit form, the solution of the problem of optimiz- 
ing the rod shape; hence it is possible to show beforehand that for chosen conditions of fix- 
ing the ends, at what point the rod deflection reaches its maximum value. For other cases of 
end support it is difficult to show in advance the point of maximum deflection, and the 
optimization problem is more complicated. It is then more convenient to solve not the initial 
problem but the converse problem of optimizing the rod shape for a given maximum value of the 
deflection Y”. It consists in determining the function so that satisfies (1.2) and minimizes 
the rod volume with the condition 

The solutions of the original and converse optimization problems are identical in the 
following sense. Let v" be the minimum rod volume for which the functional (1.5) does not 
exceed Y". Then P is the minimum value of the quality functional in the converse problem, 
and the optimal shapes of the rod in the original and converse problems are identical. Con- 
versely, letybe the minimum value of the right-hand side of (3.6) for which the minimum 
value of the rod volume in the converse problem is v". Then, Y” is the minimum quality 
functional in the original problem, and the optimal rod shapes in the original and the converse 
problems are identical. 

The control VEB that satisfies (3.6) will be called the E -optimum solution of the 
reciprocal problem, if a constant c>O exists independent of E such that the maximum deflec- 
tion that correspond to this control does not exceed Y"+ce and the rod volume does not ex- 
ceed V.(y) + ce , where V(Y”) is the minimum volume in the converse problem. 

4. Optimization of the shape of a hinged rod with full information about 
the external load. Let both ends of the rod be hinged and let the rod be subjected to a 
distributed load of intensity g1 >O and a compressive force P. The converse problem of rod 
shape optimization consists in determining the function &EB that minimizes the functional 

lix 
with the condition 

SUPt.x I Y (t, 4 I < Y0 = Poe&) 

(4.1) 

(4.2) 

When inequality (3.1) is satisfied for any tEl0, T1, 26~ IO,11, BEB , the rod deflec- 
tion is non-negative and reaches its maximum value at t = T. Hence, it is possible to sub- 

stitute for (4.2) the expression 

sup, &5) f 
10 

! z1(t?z)exP(-yyl)dtj <y” (4.3) 

we will solve the optimal control problem (3.4), (4.1), and (4.3) using the penaltymethod 

/6/. \Je fix the sequence of positive numbers (I&), limm- Ilm = 00, and consider the sequence 
of minimization problems on the set B of functionals 
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We denote by Brno the optimal control in problem (3.4), (4.4), and by* the solution of 

the conjugate equation 

ew [-rS(i+e~rp~+p(~)))d~~d~--2~~max[s(+)+ t 
T 
Cs1(t,r)exp(--yt)dt--y”,ol, J,(t,O)=o, g(t,l)=O 
Fl 

Using the necessary condition of optimality /4/, we obtain that for any m the function 

Pm" is determined by the formula 

Bo(~9~)<i% 
Fb(i*z)>B% 

I%-<PO (I, 2) <P2 

It can be shown that for any m the control p,' is the pm-%-opt+mum control in the 
problem of optimizing the rod shape. 

To investigate the effect of basic material age and the magnitude of the maximum admis- 
sible deflection on the optimum shape of the rod the problem of shape optimation was solved 
numerically for a rod of rectangular cross-section of constant width and varying thickness 
without reinforcing material. The following parameters of the problem were selected: L= IOm, 
d = 0.5 m, hl = 0.3m, h, = 0.5m, T=25 days. The rod is subjected to a uniformly distributed 
transverse load of intensity gI= 10' N and a force P= 2.5.101N. We chose the following as 
test functions 0, : 

1) pl(Ef=3dam 2) h(E)= 3dayr5<EFiom; 
i 

?day,O<t;<5 m 

3) PI K) = 
zoday,o<fq5m 
3day,5<4<10m 

The optimal distribution of the rod thickness for yO= 4.7.10~am is represented in Fig.2, 
where curves 1-3 correspond to the above test functions. Curves 4 and 5 correspond to 
Y'J> 12.3.10~Ym, and I'@= 8.7-10-8m, when the age of the basic material is defined by test func- 
tion 2). The numerical analysis shows that as the age of one of the parts of the rodmaterial 
increases its volume decreases, and a partial redistribution of material from the region of 
older to that of younger material occurs. When the maximum admissible deflection Ya is reduced, 
the rod volume increases, and the rod seems to swell, retaining its general shape. 

5. Approximate solution of the problem of rod shape optimization with 
complete information about the external load. The algorithm for solving the converse 
problemofrod shape optimization proposed in Sect.4 involves solving a system of non-linear 
integro-differentialequations, and depends on the choice of the sequence ofpenaltycoefficients 

{Pm)* In the case of a small parameter the algorithm can be improved by coordinating the 
choice of the penalty coefficients and the value of the small parameter. The initial problem 
then reduces to the problem of the optimal control of a system of the form (2.2) without con- 
straints on the phase coordinates. The latter problem is substantially simpler than the 
input one, and the fixed parameter can be determined using well-known numerical methods. 

To give a specific example, we will apply the proposed algorithm to a hinged rod. 
We will represent the magnitude of the deflection in the form of a series in powers of 

Y (t, z) = $/a + sY, + . . . + &, + . . . (5.11 

Substituting expansion (1.5) into Eq.(3.3) and equating the coefficients of like powers 
of the small parameter, we obtain a set of equations similar to (2.2). We introduce the fol- 
lowing notation: 

qj (4 = 6ro (T, 4 + vl (T, 4 + - . - + e&j (T, 4 

Besides the integral parameter j we introduce the parameter 1, O<t<j, and consider the 
problem of minimizing on the set 3 the functionals 

t 
V,(B)= V(B)+ e"(max [y(T,x)- y9 O]dz (5.2) 
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We denote by file, 81,~' the controls which minimize the functionals (5.2), by %,I (2) 
the value of the function nf(z) that corresponds to the control fi~,t’ , and by 
maximum value of the function qJ,1 on the segment lo, 11. It can be shown that a 

w, I’ the 

constant 
ca>U exists independent of e such that the inequalities 

V (p;. I) < V (PO) + cW+* 
q;, 1 Q y” + clew SUP, y(T, 5. S;, [) Q Y' + w2'/3 

(5.3) 

(5.4) 

are satisfied. 
We will select the parameter 1 from the condition that the degree of error with respect 

to functional (5.3) and with respect to the maximum value of the deflection (5.4) are equal. 
Then when 1 = 096 (i + 1) , the optimal control of the set of equations (2.2) that minimizes 
the quality criterion Vt,l (p) determines the e0?4(j+r)-optimal control in the converse problem 
of rod shape optimization. 

In particular, when j=2, the optimal control of the system of ordinary differential 
equations 

d% 
dz’ + 4Yl = - 4 (1 - B) q (P (4) (~0 + m (4). 

-$$ + 4Yi = - av8 (1 - Iv [Y1- BT (P (4) (Y o i m(+)) X P (t + P (4) [expt- yt) - exp (-+')]dt 
0 I 

is the zero boundary condition that minimizes the functional 

rip (4 = Yo (4 + e (1 - azp (--_yF)) Yl@) + @Ya (2) 

The proposed algorithm of optimal shape determination can be applied to rods with other 
forms of support. It is then only necessary to investigate the supplementary conditions that 
guarantee that inequality (2.3) is satisfied. 
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RATIONAL SCHEMES FOR REINFORCING LAMINAR PLATES FROM COMPOSITE MATERIALS* 

V.M. KARTVELISHVILI and V.V. KOBELEV 

New problems for optimizing the internal structure of plates from a laminar 
composite for a number of local and integral functionals are considered. 
A model of a laminar-fibrous composite plate is described. Prior to 
optimization,theplateis apacketof monolayers homogeneous over the 
thickness. The monolayers are formed by periodic unidirectional stacking 
of reinforcing fibres in an elastic matrix. To determine the effective 
elastic properties of the monolayers, a homogenized model of the composite 
material is used. The concentration of reinforcing fibres or the angles 
of orientation of the axes of material anisotropy in a given number of 
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